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) ABSTRACT
A class of representations for the least squares estimator is presented
and their applications sketched. Partly motivated by one such representation,
*ﬁ;éggtggoseﬁ@ class of weighted jackknife estimators of variance of the least
squares estimator by deleting any fixed number of observations at a time,
These estimators are unbiased for homoscedastic errors and a special case, the
delete-one jackknife variance estimator, is almost unbiased for hetero-
scedastic errors. The method is extended in various ways, including the use
of the jackknife histogram, for variance and interval estimation with
nonlinear parameters. Three bootstrap methods are considered. It is shown
that none of them has the robustness property enjoyed by the (weighted)
delete-one jackknife. Subset sampling with variable subset size is also
considered. Several bias-reducing estimators are proposed. They are
motivated by the observation that bias-~reduction is mathematically equivalent
to unbiased estimation of variance. Some simulation results on estimating the

ratio of two normal parameters are reported.
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SIGNIFICANCE AND EXPLANATION

R

The Quenouille-Tukey jackknife ie an o0ld tool for bias reduction and non- i
£ parametric variance estimation. Recently Efron introduced the bootstrap
method as a more versatile tool. It seems to have the potential to be useful
in many kinds of problems involving estimation of error. These tools are not
quite well developed for regression models. We propose a class of weighted
jackknife methods that recompute the least squares estimates by deleting any
fixed number of observations at a time. The key step is to weight each subset
least squares estimate with the determinant of the Fisher information matrix
of the subset. Some desirable properties of the procedures are proved. For
nonlinear parameters, the methods are useful for bias reduction and variance
estimation. Since we do not restrict to the classical delete-one jackknife,
confidence intervals can be constructed from the histogram of some proper

k estimates from the resamples. The utility of the classical jackknife method
is broadened with this new tool. On the other hand we show that the existing
b - bootstrap methods may not work so well in the regression situation. Some

simulation results are presented and further questions for research are
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JACKKNIFE AND BOOTSTRAP INFERENCE IN REGRESSION AND A
CLASS OF REPRESENTATIONS FOR THE LSE

Ce Fo Jeff Wu
1. Introduction

In the first part of this paper we show that the full-data least squares estimate 8

(LSE) can be represented as a weighted average of the LSE's 8. from all subsets s of a

fixed size with the weight proportional to the determinant of the xzxs matrix associated

with the subset (Theorem 2), i.e.,

(1.1) B = sum of w B8 over all subsets of a fixed size, w_ « IxTx frlw =1 .
s's 8 s’s’ - s

Instead of averaging over all subsets of a fixed size, we may consider drawing samples from

the full data according to a resampling scheme, and computing the LSE and the determinant

of the corresponding xTx matrix from each such sample. One main result (Theorem 1)

states that the above representation still holds for any resampling method that is

-

symmetric and nondegenerate with positive probability (Assumption B of Section 3),
including the jackknife and the bootstrap. Several implications of the representation

result are sketched in Section 3. A major one is in suggesting a new class of robust

regression estimators. The details are in Section 4.
The representation (1.1) involves a linear function of 88. To estimate the variance-

covariance matrix (henceforth abbreviated as variance) of g, it seems natural to look at
a quadratic function of B'. A quadratic extension of (1.1) is

- a a X
(1.2) £EL va(ﬂ. - B)(B' -8, v in (1.1)
where the summation is over all subsets of size r. It turns out that the choice £ =
(r=k+1)/(n-r), n = #§ of ohservations, k = # of regression parameters, makes (1.2) an

unbiased estimator of the variance of § if the errors are uncorrelated with mean zero and

constant variance (Theorem 3). This estimator is denoted as V3.x in (5.1).

Sponsored by the United States Army under Contract No. DAAG29~-80~C-0041. also, supported
by the Alfred P. Sloan Poundation for Basic Research.
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The second and major part of this paper deals with the jackknife and bootstrap

resampling methods for variance and interval estimation and bias reduction. The method
(1.2) can be viewed as a weighted jackknife by deleting every subset of size n-r from the
full-data. The purpose of the adjustment factor £ = (r-k+1)/(n-r) in (1.2) is to make
the distance of /E(as - E) match the distance of E-B. For example, if r = n-1
(delete-one-at-a~time), gs is too close to a. It is necessary to multiply the weighted
sum of sguares in (1.2) by a large factor £ = n-k. Further attention is paid to the two
extreme choices of the subset size - r« If r =k = # of regression parameters, it turns
out that v,k is identical to the usual variance estimator (by assuming equal

variances). Theorem 4 provides the details, including the necessary modification of the
definition (1.2) when some subsets are associated with singular X matrices. The other
extreme is the delete-one jackknife, r = n-1. Our proposal is closely related to a
delete-one jackknife proposed by Hinkley (1977). The main difference is that Hinkley's
estimator uses weights proportional to the square of lxgxsl and is therefore a biased
estimator of the variance of 8. Both delete-one jackknife variance estimators are robust
against error variance heterogeneity in that their biases converge to zero as n + ® under
‘{the same) weak regularity conditions. Hinkley's estimator does not fare well in the
empirical study reported in Section 10.

In practice the resampling methods of inference are only used in sitvations where no
closed form of the variance (or other measures of variability) of the point estimator is
available. 1In Section 7 we consider extensions of the above method to parameters
® = g(R) which are nonlinear functions of the regression parameters fB. An obvious exten-
sion is to replace a, E‘ in (1.2) by their counterparts g(a). q(a‘). The scale factor
£ is applied after the nonlinear transformation g, (7.1). Another approach is to
incorporate this scale adjustment internally before applying the transformation g,

(7.2). To obtain confidence intervals for 6 without computing variance estimates, we
propose a jackknife percentile method through the construction of a weighted empirical

distribution function of some estimates of © based on the same subsets with the same

weight w, in (1.1). Here we find it more natural to estimate 6 with the internal
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adjustment method. The jackknife percentile method is similar in epirit to Efron's (1982)

bootstrap percentile method. There is some theoretical advantage in using the percentile
method since the possible skewneas in the original point estimate 8 will be reflected in
the histogram of the resampled estimates. Extensions to nonlinear regression models are
briefly outlined. The jackknife methodology .hu long bsen associated with the delete-one
jackknife. It has mainly been used for variance estimation and bias reduction. The method
proposed here overcomes these limitations by allowing the deletion of more than one
observation and the construction of the jackknife histogram. Further discussion is given
in Section 7. '

Other resampling methods are studied in Section 8. The subset sampling method is an
extension of the jackknife by allowing different subset sizes. The variance estimator
(1.2) is extended to this situation. Three bootstrap methods of variance estimation are
considered. Two of them do not in general give unbiased variance estimators in the equal
variance case, as is shown by a counterexample. The third one by hootstrapping the
residuals is known to be identical to the usual variance estimator (8.19) in the case of
linear parameters. The latter estimator is unbiased in the equal variance case but is
biased for unequal variances.

The issue of bias reduction is studied in Section 9. It is shown that bias reduction
is achievable if and only if the variance of E can be estimated unbiasedly {(apart from a
lower order term)}. Based on this connection, several estimators of the bias of 8 are
proposed as natural counterparts of the variance estimators considered before. Conditions
under which these estimators achieve bias reduction are given in Theorems 7, 8 and
Corollaries 3, 4.

Several jackknife and bootstrap methods are compared in a simulation study, assuming a
quadratic regression model. Criteria for the simulation comparison include the bias of
estimating the varlance~covariance matrix of 3, the bias of estimating the nonlinear
parameter 0 = -81/( 232), the coverage probability and length of the interval estimators
of 6. Por the last two criterja, Fieller’s method and the t-interval with the

linearization variance estimator are included for comparison. The simulation results are

summarized at the end of Section 10. PFurther questions are raised in Section 11.
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2. Some matrix lemmas

For a matrix X of order n x k, 1let x, be its r x k submatrix consisting of

th th (3)
the i ,...,1r rows, g = (11""'1r)' and X be the n x (k=-1) submatrix obtained
from deleting the jth column of X. For a square matrix A of order k, its adjoint is
defined as the k X k matrix

(2.1) ade- [cij]' 1 <4, j‘k

with its (i,j) element ¢34 = ('1)i+jnji and “ji is the determinant of the
(k=1) x (k-1) ‘submatrix of A with the jth row and i*P column deleted. Let |a] ., A", i,
AT be respectively the determinant, inverse and transpose of A. Recall At . adj A/]Al,

1f A"' exists.

Lepma 1. let X and Z be n x k matrices, n > k. Then

(1) Ix"z] = § x| lz,]
sesk

(11) |xTz] = (®%)"' 7 |xTz | forany r>k ,
r-k 8 s
seS :
r
where
(2.2) Sr = all subsets s of size r .

(Note that X, and Z, are square matrices for s € Sk).
Proof: Lesma 1(i) is in Noble (1969, p. 226). Lemma 1(ii) is obtained by applying Lemma

1(4) to each term lsz‘ and to |xTz|.

Lemma 2. let X be an n x k matrix, n » k. Then

n=k+1

(2.3) aaj x"x = (2%}

)7V Y aasx®x, r>x .
s€ S 88

If xfx. are nonsingular for all s € Sr,

G J Tyy=1 o (R=k+1y=1 ¢ T T. -1
(2.4) |xTx| (xTx) (:-x+1) .zs lx.x.l(x.x.) .

Proof: FPFrom definition, the (4,9) olc-cgtn of adj xTx and adj xzx. are

(-1)1’3|x(3)rx(1)| and (-1)1*5|x£5’Tx:1’| raspectively, where xﬁi) is obtained from
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dsleting the 1eh column of Xge Therefore (2.3) is eguivalent to

(ITg(1)] o (PR+N)=1 § 1 (ITy(L)
] - G ) 1)

which follows from Lemma 1(ii), noting that x‘j’Tx(‘) and x{j)Txgi’ are both of order

k=1, (2.4) follows from (2.3) since adj A = |a|a”'.
o

Lewma 3. Let Z be an r x k matrix, r > k. If |z%z| = 0, then |zTw| = 0 for any

r x kx matrix W.

Proof: Since |27Z| = 0, 2 is not of full rank, which implies z™W is singular and

T
|z%w] = o. g

3. Rspresentations of the least squares estimator

To motivate the general representation result, let us first consider the simple linear

regression model
(3.1) yy =@ + Bx1 + LY 1= 1,.00,n

with Rey = 0, nef - 02 and cov(ei,ej) =0 for 1 ¢ j. The ordinary least squares

estimator (LSE) B of B8 has several equivalent expressions,

- N - - 0 -2
B-)i (y, = ¥ - x)/)i (x, = x)

- : 2
(3.2) - Yy, myx, = x )/ L (x, = x))
1¢3 1 3yt 3 1<) i 3
(3.3) = ¥ u 8. .
1¢y 134
where
a Yy, Y
{3.4) 81 '—1———1
3 Xy~ X
3
are the pairwise slopes for xy | xj and
. . (x1 - xl)2
4 X (xi - xj)2
i<y

To validate the step from (3.2) to (3.3), “Lj Bij in (3.3) is defined to be zero for

-

xg = xj. One can now interpret 8 as a weighted average of all the least squares

estimates Bij based on the (i,j) pairs of observations, with the weight proportional

-5




to (x; - xj)z, which happens to be the determinant of xfjxij’ where

is the design matrix corresponding to the (i,j) observations. It seems natural to gueas
the following extension for the general linear model: the LSE based on the full data set
is equal to a weighted average of the LSE's based on all subsets of fixed size with the
weight proportional to the determinant of the xTx matrix corresponding to the subset. In
fact a more general result will be shown to be true.

Throughout the paper we assume the following general linear model:

i=1...,n

TB .
Yi = xi 91 ’

where xy is a2 k x 1 determiniatic vector, f is the k x 1 vector of parameters and
2
i Writing y = (y1,o--:Yn)T:

e = (61,---:en)T and X = (x1,---,xn]T, (3.4) can be rewritten as

e, are uncorrelated errors with mean zero and variance o

(3.5) y=X8 +e , Var(e) = = diaq(af,...,u:) .
We always assume XX is nonsingular. The ordinary least squares estimator (LSE) based on
the full data (y,X) is
(3.6) g~ x0Ty .
In Theorem 1 8 is related to the LSE's based on values "resampled” from the full data
{(y,X). A brief discussion of resampling procedures is given next.

The full data, z, = (y1,x1),...,zn - (yn.xn) are thought of as being observed and
fixed. A resample of (zi)? is a reweighted version of (zi)? with weight PI > 0. The

*
vector P. - (P:,...,P;) is called a resampling vector. For each P , the corresponding

least aguares eatimate B. is based on P; “copies™ of ;. i.e.,

(3.7) 8" = (x0"x) X"y, o' = aag(r},...,B})

is a weighted least aquares estimate with weight proportional to P;. Let "*" Adenote the
joint distribution of (P;)? under a resampling procedure. The expectation under

repeated sampling according to the given resampling procedure is denoted by E,.




RS

Assumptions on the resampling procedure *:

P TR = = = e e

. x
) e (N Pi ) = Ak > 0, independent of the subset (11,..-,1k) of size X, k = & of
=1 )

parameters in (3.5).

r

] It is sasy to see that (A) is implied by (B).

*
(B) 1. The n random variable {PL}: are exchangeable.

2. Prob,(support size of P' > k) > 0, where the support aize of P' is the total

number of i's with Pj > 0.

It will be shown after Theorem 1 that several important resampling procedures satisfy the

assumption (B).

Our first major result states that the full-data LSE £ is a weighted average of the
*
resampled-data LSE's f with weight proportional to ]xTD'xl for any resampling

procedure satisfying (A).

Theorem 1. For any resampling method * satisfying the assumption (A), the LSE # based

on the full data can be represented as
™ [
(3.8) 8 %elx o xje
- = ‘-_——‘——
x.lx’rp x|
T * * T *
where |X'D X| 8 is defined to be zero if X'D X is singular.
~
Proof: First consider the D' with nonsingular xTp"x. Since B is the solution to the
T . e th
equation (XD X)8 = XDy, from Cramer's rule (Noble, 1969, p.209), the j element of
*
8 is equal to the ratioc of the determinant of the matrix obtained by replacing the jth

column of xTD'x by the vector XTD'y over the determinant of xTD'x. Notationally,

o T |
3 IxTD'xl

where x(j)(y) is the n x k matrix obtained by replacing the jth column of X by vy. :

AT S

This establishes

it atee

(3.9} IxTo"x{ 3 (y)] = lxrn'xla; for nonsingular X™°x .




ey

Por singular x"'o'x,
(3.10) 1xTp* x 3 (y)] = 0
follows from lemma 3. From (3.9) and (3.10), the jth element of the right hand side of

(3.8) equals

(3)
8

- *
g0 x M| g I x ) Iogl x|
8 8
(3.11) = - —— A
e ixp x| e, ' Ix|%o]

where f' is summation over 8 in Sk' D; = dug(l’I‘,...,P;k) is the diagonal submatrix
of D corresponding to the subset s = (1,,...,1,‘) and (3.11) follows from Lemma 1(i).
Since !.In:l =g, ; P: ) = a, >0 independent of s from the assumption (A), (3.11)
equals = 3
I ixl Yol mong
o ix, 12 |x"x|

which is equal to the jﬂ' element of B. The proof is completed.

’

An important resampling procedure that satiasfies (B) is the bootstrap (Efron, 1979).

A simple random sample z:,--.,z; of fixed sire m, is drawn with replacement from the

observed sample =z4se+.,2,. Let P; ~ NI; =2z;0 3= 1%e.m). Then P - (P:,...,P;)

FEE

follows a multinomial distribution,

. 1
(3.12) P ~ Hultn(n' ; ), l = (1,'.‘,1)

1
~

e

with = independent draws on n categories each having probability 1/n. For m » k,

{3.12) satisfies (B) and the representation result of Theorem 1 applies to the bootstrap
wethod. Note that the hootstrap sample size m need not be the same as the original
sample size n.

Another example is the jackknife method, which computes the LSE by deleting any subset
of size 4 or equivalently by retaining any subset of size r = n-d. The jackknife
resampling with fixed size r is defined by

-1
(3.13) Prob,(P; = 1 for L @s, =0 for i ¢s) =~ (3] forall sesS_ .

lat a. denote the LSE based on the subset of observations Z4 ij es,
b

-8- «
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T .-1T
(3.14) 8‘ = (szs) X’Ya .

where yg = (Yi,"“'yir)T' As a special case of Theorem 1, we have

Theorem 2. For any r ? k,

T - T -
BES IXBXBIBS SES lxst,BB
(3.15) g = 3 -
T -y T
IoIxgx | (Go0)xx]
ses
)4

where Ix:&s'as is defined to be zero for singular xzx‘.

The second identity of (3.15) follows from Lemma 1(ii). Theorem 2 is the extension
anticipated in the beginning of this section.

In general the bootstrap and the jackknife provide different representations of E.
But when the bootstrap sample size is k, [XTD'X| = 0 for any bootstrap sample with
support size less than k. The remaining bootstrap samples with support size k are
identical to the jackknife samples of size k. Therefore the bootstrap resampling and the
jackknife resampling, both with resample size k, give the same representation of E_

Theorem 2 was proved by Subrahmanyam (1972) for the special case r = k and extended
to general r by Hoerl and Kennard (1980). (They were kindly brought to my attention by
D. B. Rubin and W. Y. Tsai.) The singularity problem of xgxs was not rigorously handled
in their theorems and proofs. The same problem will surface again in variance estimation
(Section 5), where such a negligence will lead to incorrect results.

The subset LSE Bs is related to the full-data LSE 8 by (Bingham, 1977; Cook and

Weisberqg, 1982, p. 136)
~ - -1 ~ -
(3.16) B, =8 - (x7x) Xr_ =8- (x:xs) 1x_'fr_
8 8,8 88

where 8 is the complement of s and

r_=y_-¥8

8 -] 8
{3.17) -

r =y =-X8

- -'s ,
8,3 8 8

’

are the vectors of residuals in 8 from fitting the full-data LSE B and the subset LSE

Bs respectively. Theorem 2 can be restated in terms of the residuals r_, r_
s 8,8

associated with the discarded subsets 8.

o—
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Corollary 1. Por any r > k, r_, r_ defined in (3.17),

8 8,8
(3.18) I lx"x‘lx}_ = T Ixx lx'x Y %r_ =0 ,
lﬁt s s 5,8 les: s s s s s

where the terms with singular x'fx' are defined to be gero.

For r = n-1 (delete - 1 jackknife), (3.18) reduces to the familiar normal equation
L xr, = o, =Yy
diagnostic statistics involve deleting more than one observation.

- x.:s. Formula (3.18) may be useful in regression diagnostics when the

Theorem 2 can be trh.rnny extended to the weighted least squares estimators. let
W= dj.aq(u,,...,u,n) be the diagonal matrix with elements u, > 0 and W, be its square
submatrix corresponding to the set s. Let the full-data weighted LSE and subset weighted
LSE be denoted by
(3.19) 8 - (xTw":i):xT Y, S: - (x:w:x.)"-x;/u;'y. .
By applying the transformation W ‘2 to X and y, and LA 2 to X, and y,,

Corollary 2 follows from Theorem 2.

Corollary 2. For r 2 k,
- Ll
ECE NN

T a8 's
(3.20) B = T ~1
Xw X
!l !
ses %% °
r

where the terms with singular xZw;‘x‘ are defined to be zero.

Formula (3.20) for r = k is of particular interest, since ;: is identical to the
unweighted LSE a’ = x;1ys if x:1 exists. Therefore the weighted LSE s‘ is a convex
combination of the unweighted LSE's E. based on the subsets of size k. As a conse-
quence, the collection of the weighted LSE's with any poaitive weight matrix is contained
in the bounded convex hull spanned by the finite number of unweighted LSZ's based on all
subsets of size k. Rubin (1978) proved this result and noted its use in proving the

convergence of certain iterative reweighted least squares algorithms as was later done in

Dempster, Laird and Rubin (1980).




Koenker and Bassett (1978) introduced a concept of "regression quantiles™ for the
linear models as a natural generalization of the ¢ “inary sample quantiles for the location

As a spacial case, the least absolute deviation estimator is the regression

model.

wedian. It turns out that the set of regression quantiles is identical to the convex hull

of B. with 3 in S, (Theorem 3.1, Koenker and Bassett, 1978). This connection suggests
that the representation (3.15) may be relevant in robust regression. In the next section a

class of robust regression estimators will be proposed by exploiting this representation.

4. An application: some naw robust rggzpnlion estimators

As in the previous section we shall use the simple linear regression model (3.1) to
illustrate the main idea. The least squares estimator a of the slope parameter, being a
weighted average of the pairwise slopes 313 (3.4), is not robust in the sense that it can
be heavily influenced by a few extreme values of y. Theil (1950) and Sen (1968) suggested
the (unweighted) medians of ;1 as a more robust estimator. Jaeckel (1972) considered

b]
the weighted medians of ﬂij' Jaeckel (1972), Scholz (1978), and Sievers (1978) proved

that an asymptotically optimal choice of weight is clxj - xil- Note that lxj - *1' is

different from the weight (xj - xi)2 in the representation (3.3). From the optimality
property of the least squares estimator, the weight (xj - xi)2 is optimal among all

linear unbjiased estimators of 8.

a

The representation of £ in terms of “13 suggests a host of robust modifications.

An important class is the following weighted trimmed regression estimators. Let [ =

{(1,3) : 161 ¢y <n, x # xj} and [I] = t. oOrder the B4 (1,3) @ 1, into
;(1) < ;(2) € oo € a(t). et '1) be the weight associated with aij and Y1) the

corresponding weight associated with 8(1). The (a1,az) - trimmed regression estimator is

defined as
k~-m k-m
. 2 (1) 2
g, .= ) “w, B/ S o,
tr m‘+1 W m1+1 (1)
(4.1)

I X
w - Qa \ 4 =Q .
SR g

-

In Btr' the lower 100 a. & and the upper 100 czt (according to the weighted empirical

1

Py
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distribution of B(l with weight w(i)) of the pairwise slopes Bij are trimmed. The

trimmed regression estimator (4.1) covers both the least squares estimator and the weighted
median estimator as u1 and a2 vary. From the above discussion, for c1, “2 close to

- 2 -
zero '13 « (xj x4) should be chosen; and for a1,uz close to 0.5, wij « Ixj xil

should be chosen. The optimal choice of '1j for general a1 and az depends on the
asymptotic distribution of Etr, which is beyond the scope of the paper.

Assume k = [;), l.00 % < xy for all i < j. The breakdown point (Huber, 1981) of
the unweighted (a,a) - trimmed regression estimator (4.1) (with wig = 1) is computed as
follows. let m of the n Yy values be perturbed. The percentage of the pairwise

slopes Bij not affected by the perturbation is

(n-n
o2 24 iy -} S SR - g2 =B
1 LR S R IS Bary I P

n

)
which equals o iff the percentage of the perturbed y values equals 1 - /1-a,

* —
(4.2) £t =1 -/1-a ,
L

which ia the desired breakdown point. For small a, £ ~ %. The breakdown point f' as a
function of a is given in the following table.

a 0.5 0.4 0.3 0.2 0.1
*
f 0.293 0.225 0.163 0.105 0.051

Notice that the Theil-Sen median regression estimator has a breakdown point 0.293. For
general weighted trimmed regression estimators, no simple formula like (4.2) is available
since it depends on the particular weight syatem. Robust regression estimators with high
breakdown point are considered in Siegel (1982) and Rousseeuw {(1984).

One can also consider the (a‘,cz) - Winsorized regression estimator by taking the
weighted (01,02) =~ Winsorized (Huber, 1981) mean of 8(1). Other robust alternatives are
straightforward.

For the general regression model (3.5) and the subset least squares estimates ;s
(3.14), a weighted trimmed mean of a., s € St, can be obtained by (i) ordering the

vector-valued B. according to some criterion, e.g., the Mahalanobis distance, convex hull

trimming or ellipsoidal trimming (Titterington, 1978), (ii) trimming the extreme values and
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(iii) taking a weighted average of the remaining ones. The weight can be proportional to

lex.l, or to IxIx-|A where the power A is chosen between 0 and 1. Another way is

to apply the weighted univariate trimming to each component of B' separately.

For the delete-one jackknife, r = n-1, our proposal results in the following

estimator
n-m n-m
- 2 A S(1) 2 A
] = Ff-w %, Tt aw ",
(4.3) tr,J(1) i 1+1 (1) 1qm1+‘ (1)
where 8(1) are the ordered values of 8_1, i = 1n, 8_1 = LSE of B with the 1th

oboetvntioﬁ deleted, Yig) is the 'j = xg(xTx)"xj associated with 8(1). (In later

sections we shall denote ;-1 by 6(1)-) Hinkley (1977) proposed a similar estimator, the
main difference being that his "ordering”™ is on the weighted pseudo-values Q=
a + n(a-ui)(ﬁ-ﬁ_i). Without a detailed atudy, it is hard to judge their relative merits.
We merely point out that |Q1 - E| > |§_1 - ;I 1f w, < 1-n~'. This follows from (5.15)
and (6.8).

Other regression L-estimators have been considered by Bickel (1973), Koenker and
Bassett (1978), Ruppert and Carroll (1980). The main difference between our proposal and
theirs is that the former directly involves repeated estimators of 8 while the latter

depend on the residuals. This may provide a clue to the possible advantages of our

proposal.
Finally we consider a class of robust regression M-estimator obtained by minimizing
(4.4) I was_ -8 ,
ses * 8
r
where w, may be proportional to lx:x.Il or some other weight function, n(8_ - 8) =

t(las - ;l), I;' - At is a distance measure of Bs - B8, and ¢ is a scalar function
discussed in Huber (1981). For Ve ™ lxzx.l and n = Buclidean distance, the regression
M-estimate (4.4) reduces to the ordinary least squares estimate via Theorem 2. Hinkley
(1977) proposed a similar estimator for the delete-one jackknife in terms of the weighted

pseudo-values Qi' Since (4.4) requires more computation than the usual M-estimator, it

can not be recommended for practical use until further desirable properties are documented.




S. General weighted jackknife in regression

Miller (1974) extended the ordinary (unweighted) jackknife to the regression situation

and proved some asymptotic properties. Since the subset LSE's are not exchangeable,
unweighted jackknifes do not seem natural. As a consequence, the acclaimed “bias-reducing”
property of the jackknife in the location case is lost here and the unweighted jackknife
variance estimator is biased even for linear parameters. Recognizing this problem, Hinkley
(1977) proposed a weighted jackknife and demonstrated its desirable properties. Both dealt
with jackknifing by deleting one observation at a time from the full data. 1In this section
we propose a class of weighted jackknife variance estimators of the LSE ; by deleting any
fixed number of observations at a time. Jack-knife estimation for nonlinear parameters
will be considered in Section 7.

Since jackknifing by deleting d observations is equivalent to retaining r = n-d
observations, all the results of this section will be in terms of Q., the LSE based on

the subset s. The proposed jackknife variance estimator by recomputing the LSE for each

subset of size r is
T “~ -~ -~ ~ T
Y Ix’x.|(8' - BB - B)

= Yokl e

(5. 1) v p
J,xr n-xr {- IX:X'I
seSr
\ n=k =1, T =1 T - ~ - P
A (5.2) - (r_k”) Ix x| .ES Ix x (8, - 81(8, - 81" ,

where xfx. are agsumed nonsingular for all s € Sr and (5.2) follows from (5.1) via
lemma 1(ii). Under the ideal assumption that the errors e; in (3.5) have constant
variance 02, we prove that v3,r satisfies the minimal requirement that it is an
unbiased estimator of the variance of a under the same assumption. Other properties will

be taken up in Sections 6 and 7.

Theorem 3. If Var(e) = czl in (3.5),

1

(5.3) Evy, ) = o (X0 " = var(s) .

- - - 10
Proof: PFrom 8. -8 = (x'x.)

1.T " T, .- a
X (y, = X8) = (XX ) Xr, where r =y, -Xg is the

-4~




residual vector for the set s,

1 1

T T T -
XrrX(XX)
s s

T - -~ -~ ‘T T T -
(5.4) |xlxl|(al - B)(Bl -8 - lx-x-|(x-x-) ss's's

and its expectation is

1.7 .. =17 T, -1
X.(I. - X.(X X) X )X (X X )

T T -
lxlxl'(xlxl) s 9 88

b A an mimw e

T - -
- lx:'x.ltx'X.) ‘. lx:'x.!(x'rx) ', -]

where I, is the identity matrix for the set s. From Lemma 2,

1 - (h'k*‘
r=k+1

(5.5) T Ixix |(x7x )" NxTx)ex™ ',

seS
r

and from Lesma 1(ii),
T T =1 _ (n=ky  Tu|, Ty, =1
¥ |x.x'|(x X) = (r_k)lx x| (x*x) ’

r

which, together with (5.5), imply

1

™k 1xTx | xx”Y,

T ~ ~ ~ -~ T
e D Ixx [8, - 8)e, -8 = (20

-e!;

and thus proving the result.

The factor

£ks 1
n=r

£ =

in V3,xr ©an now be given a statistical interpretation. The sampling error $-f has

1. Given B8, the "resampling error" 8. - 8 has 5-1 V3,x a8 its !

variance OZ(XTX)-

(weighted) "resampling variance®. Due to the unbiasedness result (5.3), the original

sampling error f-8 and the resampling error B. - 8 have different stochastic orders.

The purpose of the scale factor V% is to make the two errors of the same order in the

following sense,

(5.6) Vhr(/E(B' = f)) = Var{A=B8) + lower order terms for all s .

In fact, we have, from (5.3),

(5.6)° I w, var(/E(8, - 8)) = var(8-8) ,
-eSL

where the weight w_  is proportional to Ixzx.l. In particular, for p = 1, this reduces

P WP gk P 3 iy

to

var(/E(B_ - B)) = var(8-8) ,

-1S=




since Ve is a constant. In general, if the weights w

s are uniformly bounded away
from 0 and 1, (5.6) follows from (5.6)'.

The implementation of Vy, et T < n=-1, and its extensions in more complex situations
(some described in Sections 7 and 9) may be too cumbersome since (:) computations of R-
and |x3x.| are required. As in the bootstrap method, it is suggested to use a Monte
Carlo approximation:

(i) drav J subsets randomly without replacement from S,; denote the collection of the

selected. subsets by S,

(ii) compute the variance eatimate

g A A s am
T 1xx |(8_ - B)I(B_ - B)
. r-k+1s8S ** * °
J,r n-r Z |x'l'x I *
.6 8 8

When the subset size r equals the number of parameters k, the jackknife variance

estimator v3,x can be defined without the additional assumption that xzx. is non-

singular for any s € sk' Por s € Sk, B. - x;1y., B. -8 = x;ir., rg in (5.4), and

- A A Y T T
T, a7 . 2,~1_ T, T,-1=adj X_ r_ r (adj X_) . Note that adj X
lx.x.l(s' - B)(B. 8) Ix.| Ay TaTglXy) s s "8 s s’
the adjoint of X, is alvays defined whereas |x.|x;‘ is defined only for nonsingular

X_. This suggests defining

|
‘ 2 ~ ~ -~ ~ T
(5.7) v, . = T Ix |8 - 8)(B_ - 8)
I,k (n-k)leXI 'CSk s s s
1 T T
(5.8) T (ady x)r_ r (ad) X)) ,

" (nex) Ix"x| ses,
where (5.7), a special case of {5.2), requires |x.| ¥ 0 for all s @ Sk while (5.8) is
well-defined without any additional restriction. The proof of Theorem 3 works for the
variance estimator (5.8). ‘The only change involves replacing (5.5)' by a similar identity
in terms of the adjoint matrices (see (2.3)). Por vy,x e can astablish the following

coincidental result, wvhich also implies the conclusion of Theorem 3.
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Theorem 4. When the subset size is equal to the number of regression parameters, the

jackknife variance eatimator V3. (5.8), is identical to the usual unbiaged variance

estimator

rTr
(5.9) var = 02(x’0)", 02 = =, r =y -3 .

nek’ ~
Proof: Note that

1+3, (1)
(ady X )x, = [(=1) lx.(j)l]"'j(x'j)j
(5.10)
- _qy i1 (1) - (1)
(E( N e Xy Dy = AT hy
(1) th th

where x'(j) = matrix obtained from deleting the } row and the i~ column of Xyr Tyy =
jth element of Eoe x:i’(r.) = matrix obtained by replacing the it column of X, by

ry+ The last equation of (5.10) follows from the usual result on expansion of determinant
(Noble, 1969, p. 208). From (5.10), the (i,j) element of the matrix

T T
T taay X )r r (ad) X )" in (5.8) is equal to

(5.11) TP 0 y) = 1x T px !

. (o) .

(1) 1th

vhere X (x) 1is the matrix obtained by replacing the column of X by the residual

vector Y. Since x:‘)(r.) is the k x k gubmatrix of x(i)(E) with rows corresponding

to the subget s, (S.11) follows from Lemma 1(i). Noting that r is orthogonal to the

other colusns of x(i)(i) from the normal equation xTE = 0, the (i,j) element of

x(i)r(s)x(j)(g) is 5T£, and the other elements in its i*" row and_jth column are zero.
This gives
(5.12) lx(i)T(£)x(j)(£)‘ - (_”1"j£'l‘£|x(i)'rx(j)| ,

wvhere x“’ is the submatrix of X with its ith column deleted. From (5.8), (5.11) and

(5. 12), we have

T
ry
1494 (4)T_(3)
v . = f[-n"7x x'
Ik (n-k)lexl 1.3
T
L aa4 x'x 2,7, -1

- g (x'x)" " .

(n~k) 'x'!‘xl




A bootstrap resampling method also leads to the estimator 4:&, (5.9). Details are

in Section 8.

Theorem 4 was proved by Subrahmanyam (1972) for the variance estimator (5.7) (not the
more general (5.8)) by assuming |x.| # 0 for alls in S,. It i{s important to distinguish
(5.8) from (5.7) in case lx'l = 0 for some s. For a subset s with lx.l = 0, it is
incorrect to interpret |x.|2(§' - 3)(3' - E)T in (5.7) to be zero as was done before in
the representation theorem. This is obviously so since the more general expression
(adj X.)r. rz(adj x.)T in (5.8) for singular or nonsingular X, 1is nonnegative definite
and is in general nonzero for Qinqular Xg+ Such an incorrect interpretation of (5.7) will
lead to a varignco estimator smaller than ;z(xrx)". A simple illustration follows.

Consider the simple linear regression model (3.1) with k = 2. The jackknife variance

estimator v, , for the slope parameter 8 has two forms

n Y.~y a
(5.13) V3= ¢ f (xi-xj)z(;i:;i - 8)2
. i¢3 177y
D iy -1, - bngeg®
(5.14) =c y, =y, - Blx =x_)) '
<3 i 3 i)
where ¢ = (n(n-z)tz(xi-x)z)-i, (5.13) comes from (5.7) and (5.14) from (5.8). In terms
of the residuals & =y -a- [ L (a,8) = LSE of (a,B), (5.14) equals
N A n n .,
c ¥ (ei-ej)2 = (7 (x, - ) Tn-2271 ) ef
1<3 1 1

Apart from the constant c, the contribution of the pair (i,3) with X = xj to the

variance estimate is (e1 - ej)2 - (yi - yj)2 which measures the variability within two
repeated runs. Interpreting terms in (5.13) with x4 = x4 as zero amounts to ignoring the
internal variability of the responses with the same x value, thus leading to under-
estimation of the true error.

At the other end of the choice of r is the jackknife variance estimator Vy,n-1
obtained by taking every subset s of size n-1, or in a more familiar language, by

deleting one observation at a time. For each s in Sn_1. let i denote the element not

in s, and write x. - x(i). We shall adopt the notation that the subscript "(1)" added

=-18- 7




ith

to a quantity means "with the observation deleted," and in a similar spirit, use I

. T - T
for the "delete-one" jackknife variance estimator Vi, n-ie From Ix(i)x(i)l (1-w1)|x x|,

wy = X0 Y%, (5.2) ana

(5.15) 8, . =8 - (X0 'x.r (1w,) -1,

(i) i
where ’(1) is the LSE of f with the ith obgervation deleted and Iy =y, - xza is the
ith residual, Ya(1) takes a simple form

n - a A -
(5.16) v . =L (1w )@, -8B, . -8

J(1) 1 i (1) (1)
n rz
T, .~1 i T T .~-1

(5.17) = (X"X) ¢ 1_" xixi (X'x) .

It turns out that AATE) enjoys a model-robustness property, which is the main theme of

the next section.

6. Model-robustness of the weighted delete-one jackknife variance estimators

In Theorem 3 the general weighted jackknife variance estimators Vy,r Aare shown to be
unbiased for var(B8) if the errors are homoscedastic. It is natural to ask how V3.r
will perform under violationa of the homoscedasti<ity assumption. Since under the

heteroscedasticity assumption var(e) = diaq(a:,...,u:), the variance of B is

(6.1) var(g) = (x'x)”" Fa xn"t .

From comparing (5.17) and (6.1}, it seems that Y1) is robust for estimating var(B),

(6.1), under the broader heteroscedasticity assumption. This remarkable aspect of both

A2 TE] and a related variance estimator will be treated in this section.

The asymptotic computations (as n becomes large) will be done under one or several

of the following assumptions.

(C) 1. Let X, denote the X matrix in (3.5) for n observations,




(x:x Y 'x

T
i n i

mAX X < 5, ¢ independent of n.

1<i<n n
2. max o: <=,

i 1Kic»

T

3. The minimum and maximum eigenvalues of % xnxn are uniformly bounded away from

0 and e,

f : 4. The elements of X, are uniformly bounded.

From comparing (5.17) and (6.1), the unbiasedness of vI(1) for estimating var(B)

: hinges on the relation !x‘f = (1«1)03. Conditions for its validity or approximate
i
i
‘ 3 validity are given in the next lemma.
E H
o leoma 4. If
g (6.2) wiy = x(XTX)"x, = 0 for any 1 j with o, $ o
g . 1j 1 j Y L] 1 j L4
B then
[ 2 2 T wTyy =1
(6.3) ki = (1-'1)01 ’ '1 b xi(x X) xi .
More generally, under the assumptions C1 and C2,
B 2 2 -1
‘ ' (6.4) Ery = (1«1)01 + 0o(n ),
where the big O - notation O(n"') denotes terms of order n~'.
T -
Proof: From x; ™ y; - xia e, - x':(x'rx) ‘XTGO
n n
2 2 2 2 2 2 2 2 2
(6.5) Bry =0 - w0, + j}” w49y = Owydop + 521 vigloy =05
n
wvhere "1j = x:(xTX)-1xj and the second equality of (6.5) follows from w = f ':j' It

I=1

is now obvious that (6.3) follows from (6.2). Assuming C1 and C2,

2 2 2 2 2 2
I}' wigloy - o] < 2 (:\ax o) L wi, = 2(max o)v, ,

y 4 i

which is of order n". Therefore (6.4) follows from (6.5).

By comparing (5.17) and (6.1), the following result is obtained as a direct

consequence of Lewmma 4.
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Theorem S. Under (3.5)

(1) B3y = va) under (6.2),
(11) Bvy(yy = Var(8)(1 + O(n™')) under (c1 - C2).

We are not able to prove a similar result for the more general Vi, e’ We conjecture
that v3,r is also robust in the above sense for r close to n. This is confirmed in

the simulation study of Section 10.

The assumption C2 is weak; C1 is also reasonable since it is easy to show that it is

implied by C3 and C4. C3 says that X'X grows to infinity at the rate n. Usually a
stronger condition like n"x:'xn converging to a positive definite matrix is assumed
(Miller, 1974). On the other hand, (6.2) is a more restrictive assumption. let q be the
number of different Oi'l in (6.2). Then the linear model (3.5) can be rewritten as

(6.6) y“‘ - x':kB + ‘1]:' uik = 0, Var .1k - di, k = 1‘”“1' 1= (1)q .,

with uncorrelated errors. LlLet '1‘1 be the subspace spanned by Xypr k= 1(1)n1. According
to (s.'z) Ty i = 1(1)q, are orthogonal to each other with respect to the positive
definite matrix (x°x)”'. Writing dim(T,) = dimension of T, in R%, we have

)_ d:l.n(‘!i) = k since Ty, i = 1(1)q, generates the column space of X, whose dimension
is k. A special case pf {6.6) is the k-sample problem with unequal variances. Let

i = Xy for k = 1(1)n1. Then X d = 1(1)q, are orthogonal to each other

wer.t. (XTX)"Y, which forces q = k. By writing 91 - x'fa, (6.6) becomes the k-sample
problem

(6.7) ¥Yik = 91 ‘e, "n = 0, Var LT cf. k = 1(1)n1, 1= 1k .

The k x k matrix 2T = [x,,...,xk] is nonsinqular and 68 = (0’,...,01‘)!‘ =278 4is a
reparametrization of f$. We shall come back to (6.7) later.

Closely ralated to our Y31 is a weighted delete-one jackknife method first
considered by Hinkley (1977). His approach is via the construction of pseudo-values in the
hope that the nice properties of pseudo-values in the location model would carry over to
1tl’x

the regression model. Specifically, define the weighted pseudo-value

- " oa - o 1
(6.8) o, = 8+ n(1-vi)(6-8“)) =8 + n(XX) XX W, in (6.3) . ;




ey

4
I
!

Note that Qi differs from the unweighted pseudo-value in that the weight (1-w1) is

attached to n(B-8 and that (1-w;) is proportional to |xfi)x(1)|. Hinkley (1977)

(1)
pointed out that

-1 n
(6.9) g=n T o -
1

The right hand expression of (6.9) is the usual jackknife point estimator in terms of the
pseudo-values. (6.9) is also a special case of the general representation (3.15). He then

defined the jackknife variance estimator in terms of Q

n - -
= {atn-1)1"" ¥ (g, -8)(9,R)"
1

VH(1)
'i' (1-\'1)2 - - & -~
(6.10) = 4] - B)(8 - 8)
¢y ) (1)
n rz
(6.11) = o0 = !
t 1=n k

as a direct extension of a similar definition in the location case. From comparing Ya(1)

(6.11), and (5.17) it seems that V(1) is also robust in the sense of Theorem

Y1)
5(ii). The comparison is however more favorable to the latter. Under the ideal assumption

: - (1-wi)oz # (1-n-‘k)cz. Therefore EVH(1) d oz(xrx)-,, although under

(C1) the difference is of lower order, i.e., !va(1) - oz(xTx)-1(1+o(n-1)) since Erf -

2
Var(e) = 0 I, Br

(1-n—1k)o2 - (n-1k - wi)c2 - O(n-i) under (C1). Under the broader assumption Var(e) =

1even under the restriction (6.2)

n
2 2 - T, .~1 S P
diag(oy,...,0.), Bv, .\ A Var(B) = (X'X) % gy %, %, (X" X)
of Theorem 5. As in Theorem 5(ii), YH(1) is approximately unbiased under (C1 - C2),
- -1
i.e. !v“(1) = Var(B8)(1 + O(n )). This is because

r 1=w
-

L L o2+ o™ = el v on™h
i-n Xk 1-n %k

where the first equation follows from Lemma 4, (6.4), and the second equation follows from

(C1). The results concerning Vu(1) are summarized in Theorem 6.

Theorem 6. (i) Under Var(e) = ozl and (C1), Bvy ) # Var() but

- -1
svn") = var(B)(1 + o(n )) .
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(i1) Under Var(e) = diaq(ai....,a:) and (C1 - C2),

By, = Var(B)(1 + o) .

Unlike VI the exact unbiasedness Evﬂ(1) - vur(;) does not hold true even in
special cases. In the simulation of Section 10, Vu(1) is found to be more biagsed than
other estimators for both equal and unequal variances. Theorem 6 is a more rigorous
version of what is essentially in Hinkley (1977). The strong consistency of V(1) Wwas
egtablished in Hinkley (1977, Lemma 2 of Appendix) by following Miller’s (1974) proof for
the balanced jackknife. The strong consistency of AA TR Ean be established in a similar
manner.

Standard asymptotic justifications of the jackknife variance estimators are in terms
of ita consistency and the normality of the associated t-statistics. They confirm that the
jackknife method works asymptotically as well as the classical §-method. Then, why should
the jackknife be chosen over the §-method except possibly for computational or other
practical reasons? The "robustness" of Y3 and YH(1) (Theorems 5(ii) and 6(ii))
againat the heterogeneity of errors, first recognized in Hinkley (1977), is a truly fresh
and important property of the jackknife methodology. (Practically speaking this advantage
should be put in the context of nonlinear estimation, Sections 7 and 9.)

To further appreciate this point, let us consider the robustness aspect of the usual

- -1
variance estimator 4:} =- oz(xTX) « For Var(e) = diag(oi,...,u:), from (6.5)

n 1-w
~2 i -2
B = g n=k di g *
Therefore
(6.12) E var = a2(x7x)""
is equal to

- n -
var(8)(1 + otn™) = (x"07' T (62 + otn™hx x]1x™0) 7
1

it nlxla: - 02| = o(n-1), or equivalently,
i

-1
(6.13) max cf - min 02 = O0(n ) ,
1€<i<n 1<1i<n

since 02 is a weighted average of a:. The condition (6.13) is sufficient for the

IO




robustness of 6:& in the sense of Theorem 5(ii). However the result is quite
uninteresting since (6.13) forces the variances to be nearly equal for large n. A
detailed comparison of YI(1)* vn(1), 6:} and other bootstrap variance estimators for the
2-sample problem will be given in Section 8.

To close this section, we shall make two other remarks.
1. Tukey's reformulation of Quenouille‘'s jackknife in terms of the pseudo-values works well
for the i.i.d. case. Its extension to the non-i.i.d. situations may lead to less desirable
results as is evidenced by the slight inferiority of (1) to A TEIN A more striking
example is offered in the context of inference from stratified samples. Two jackknife
point estimators have been proposed in terms of some properly defined pseudo-values, both
of which reduce to the usual jackknife point estimator in the unstratified case. It was
found recently (Rao and Wu, 1983a) that neither estimator reduces bias as is typically
claimed for the jackknife. On the other hand a truly bias-reducing jackknife estimator was
not motivated by the pseudo-values.
2. We suppose that the purpose of jackknife variance estimation is to aid the point
estimator S in making inference about 8. The variance estimators are then required to
be nonnegative and almost unbiased. However in situations like the determination of sample
size, the variance itself is the parameter of primary interest and other risk criteria like
the mean square error (MSE) will be more appropriate. 1In this context, a nonnegative
biased estimator (J. N. X. Rao, 1973) and MINQUE (C. R. Rao, 1970) (which may take negative
values) have been proposed. Horn, Horn and Duncan (1975) proposed (1-w1)'1r§, which

appears in a1y (5.17), as an estimator of 62 and called it AUE (almost unbiased

i
estimator). The MSE of (1-w1)'1rf was shown to be smaller than that of MINQUE in a wide
range of situations (Horn and Horn, 1975). It is difficult to extend this comparison to

estimation of the variance-covariance matrix.

7. Jackknifing for nonlinear parameters

So far we have confined our study of the jackknife to the linear parameters as an

important test case. Their utility as a practical tool is more appreciated in the complex
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situations where no exact results are available. In this section we first consider a simple
nonlinear situation. The parameter of interest 6 = g(8) is a nonlinear function of the
linear parameter B8 in the model {(3.5). The natural estimator of 0 is 8 - 9(8). In
this and the next section we will consider variance and interval estimation for ;. Bias
reduction of 3 will be considered in Section 9. PFxtensions to nonlinear regression
models will be briefly outlined later.

A natural extension of the general weighted jackknife variance estimator vy ./

(5.1), for the nonlinear estimator 6 = g(B8) is

- A & - h
T o(x™x [ -8y -0 g
. . S 58 8 s
(7.1) v, (8) = Tkl _x .
J,x n-r T
P olxx|
s€S
r
where e. - q(B-) and 5. is assumed to exist for any a € r* Another extension of
va'r is
T -~ 2 R
i (x.x'I(a' - 0)(8, - 8)
~ - -esr
{(7.2) v (8) =»
o ) x|
s€sS
r
~ ~ A fyakel 4 -
(7.3) e' - q(ﬂs); 8' =0 4 n-r (8. - B8) .

Both can be implemented by Monte Carlo approximation as in the linear case. 1In (7.2) the

scale factor Vr-k+1/Yn-r is applied internally to B. - B8, while in (7.1) it is applied

externally to 8. - 6 after the transformation g. Under reasonable smoothness conditlons
on g, both ;J,r‘s) and ;J,r(s, will be close to the linearization (or O6-method)
variance estimator

(7.4) ein ® q'(a)TvJ'rq'(a) ,

where g'(é) is the derivative vector of g evaluated at a. For variance estimation
there is perhaps little difference in choosing between GJ'I(S) and CJ'r(S). The

internal scaling (7.3) turns out to be instrumental in the following construction of the

jackknife distribution based on repeated sampling of subsets of size r:

({) draw subsets Bysnee,By randomly without replacement from Sr,




A\ ~ ~
(11) construct a weighted empirical distribution function CDPFJ(t) based on q(ﬁ' ). B.

1 1
defined in (7.3), 1 = 1{1)J, with weight proportional to |x'£1x.1|-

S8imilar to Efron's (1982) bootstrap percentile method is the jackknife percentile

method consisting of taking
(7.5) &ea V@) . &ra”M(1-an
as an appropriate 1 - 2a central confidence interval for 6. Since 63)J(t) is a
discrete function, (7.5) is computed with a continuity correction. For multiparameters
8, a confidence region can be similarly constructed once the shape of the region is deter~-
mined. Efron (1982, Chapter 10) considered the smoothed percentile, bias-corrected
percentile and bootstrap t as modifications of the bootstrap percentile method. The same
idea can be applied to the jackknife percentile method in a straightforward manner. It is
more natural to apply the internal scaling (7.3) since a is the center of the weighted
distribution of 8' due to the representation result, Theorem 2, while 8 may be shifted
from the center of the weighted distribution of 8. due to the nonlinear distortion gq.
Por this reason we think (7.2) may be more natural than (7.1). The issue of internal or
external scaling also arises in the context of bootstrap inference from stratified samples,
where it is found that a standard bootstrap method involving a single external scale
adjustment gives rise to incorrect variance estimate (Efron, 1982; Bickel and Freedman,
1984), since the corresponding internal scales vary from stratum to stratum. This
observation has led Rao and Wu (1983b) to construct a valid bootstrap method by applying
the internal scale factor within every stratum before applying the transformation g.

In a more complex situation like the nonlinear regression model
(7.6) Yy = 51(8) te
where fi is a nonlinear smooth function of B and the error e; satiafies the
assumptions in (3.5), the jackknife variance estimator V3, (5.1), has a natural
extension, namely, to replace x:x; by ) f{(;)fi(a)r with i summing over s and to
interpret ; and ;- as the nonlinear least squares estimates based on the full-data and
the subset s, fi(a) is the vector of derivatives of fi with respect to B. We may

consider alternative weight functions to avoid the computation of £{ or by evaluating it
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at other estimates a.. Another approach that requires less computations was proposed by
Fox, Hinkley and larntz (1980). Confidence intervals can be constructed from the jackknife
histogram based on E., (7.3), with the weight function discussed above. Their properties
and a similar extension to the generalized linear models will be reported later.

The term “jackknife" is commonly identified in the literature with the delete-one
jackknife. According to Efron's (1982) simulation results, the delete-one jackknife does
not in general perform as well as the bootatrap. We think there are two reasons for

this. First, the delete-one point estimate 6 = g(8 is too close to 8 = g(B8) to

. (1) (i))
reflect the true variability of 8 - 8 = g(8) - g(8). The linearly adjusted

/n-k (6(1)-6). though correct to the first order, does not take account of the

nonlinearity that the function g has undergone between R and R, since 8 -8 is of

larger order of magnitude than 8(1) - 8. PFor nonsmooth 6 1like the median in the

location case, the delete-one jackknife variance estimator is not even consistent. The

second reason is that the delete-one jack-knife generates exactly n resampled estimates

6 ...
(1)
histograms. This is why the delete-one jackknife method is traditionally associated with

Except for very large n, they do not provide enough values for constructing

variance estimation. The resulting symmetric confidence intervals of the form

[6 - to, 8 + to) have a serious drawback, namely, they can not reflect the possible

-

skewness inherent in the original estimate 8 around 6. On the other hand, the
hiatogram-based confidence intervals do reflect the skewness in 3. For the bootstrap
method, this was rigorously established in Singh (1980) for some estimators.
This and the fact that 8. - ; and ; ~ f are of the same order of magnitude, where 8.
is the bootstrap estimate of B8, perhaps explain the general good performance of the
bootatrap histo~gram methods over the delete-one jackknife method.

It should be clear by now why we propose the general jackknife method by deleting more
than one observation. It generatee more pseudo-replicates of ; to allow for the
construction of a histogram. For n = 20, the delete~two jackknife generates 190 values

instead of the meager 20 values given by the delete-ona jackknife. Regarding the

question of the choice of r, we may choose r to make the scale factor (r-k+1)/(n-r)

27~
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near one, that is, r ~ (n+k-1)/2. This choice guarantees that S' - ; is of the same
stochastic order as 3 - 6 and makes it unnecessary to perform the internal scale
adjustment (7.3). Por the location problem k = 1, choosing r = % reduces to the half-
sampling procedure (Efron, 1982, Chapter 8). Another advantage of choosing r near (n+k-
1)/2 is in variance estimation when the parameter of interest is not a smooth function.
The inconsistency of the delete-one jackknife variance estimator for nonsmooth estimates
like the median can be avoided. 1In the context of complex sample surveys, the balanced
half-sample method of McCarthy (1966) is found to provide wore reliable confidence
intervals than the linearization method and the jackknife method in the empirical study of

Kish and Frank. (1973).

8. Bootstrap and subset sampling in regression

Can the previous results for the jackknife be extended to other resampling methods?
*
For a given resampling method denoted by *, 8 and D. defined in (3.7), we would like
to f£ind a variance estimator of the form
. A .“T
(8.1) v = AE w (B ~-8)(B -8) '
vhere the weight w, is proportional to |X'D'X| and E,w, = 1, such that it satisfies

the minimal requirement (as in Theorem 3)

(8.2) E(v]var(e) = o°1) = o2 (x’x)"" .

The left hand side of (8.2) is equal to

~1. T %2 T

* - -
xazz.{v,(xro'x) X0 2x(x'p X! - w,(xrx) !

}

T 1

(8.3) - xaz(:.tv.(xro'x)' o o ™ - ™Y .

The first term inside the curly bracket of (8.3) seems intractable except for

(8.4) 0°2 = 0" = atag(P},....BY)

which is equivalent to P; =0 or 1 for all i. This prompts us to consider procedures

satisfying Assumption (B) and condition (8.4), whose defining probabilities
c

* *
(8.5) Prob.(P;1 =t =B =1, remining P =0) = &
r ()
r

are independent of the subset (11....,1r), where c,. is the probability of resampling a
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subset of size r, Cptreote, =1, When Cr ™ 1, (8.5) reduces to (3.13), the jackknife

with fixed subset size r. Therefore we call any procedure satisfying (B) and (8.4) a

subset sampling procedure. Some may prefer to call it a variable jackknife. Back to

(8.3), its first term under (8.4) is

1

,[xD x[x0' 0" g, agyx™o’x)

* -
E,|xD x| x,lxib'xl
whose (i,j) element is
T
(3)  * (1)
143 B lx? px'"’|
(=1) —
E Ix'D x|
( * (1)
Tpes, 1x{V e, 1071 |x¢4)
1+ -1
(8.6) = (-1)

2 *
t-esklx-| !.ID.I

T
e S WO LA P ALLEP Aabd i 20

% |xTx| Oy

where the expansion in (8.6) is justified by lemma 1(i) and

(1,§) element of (x°x)"' ,

(8.7)

ﬂ-i)

r-i

n
. * * ny~1
(8.8) a, = Prob,(P, = P, =ece= B = 1) = rz; e (2)7(

Prom (8.1), (8.3) and (8.7), for a subset sampling procedure *, we have found that the

variance estimator

T * * A * > p
@y -1 E|xD x|(R -B)(B -B)
%

(8.9) (

L ]
£, |x'D x|
satisfies the unbiasedness requirement (8.2). For the special case of jackknifing with

fixed subset size r, :!:l - 1= ;Eié? and (8.9) reduces to the jackknife variance

estimator v (5.1}

J,x’
Note that the scale factor in (8.9)

*

k-1 "
-

1 = u /a * - > meoem -
k" %k-1  Prob (P, olp1 P,

1)

* *
-1 0, /8, _, ) Prob, (P, = 11p1 mseem P

(8.10) (:Eil - 1)

is a conditional odds ratio given that the first k - 1 units have been selected. For

jackknifing with subset size r, this alternative interpretation of the scale factor
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(r=k+1)/(n-r) may be useful.

*
Among those resampling procedures that do not satisfy (8.4), i.e. Prob.(?1 » 2 for
some i) > 0, we single out the bootstrap, (3.12), for further study. Unfortunately it
will be shown next via a simple counterexample that no variance estimator (8.1) for the

bootstrap can satisfy (8.2) in general. Consider the following regression model:

Yiq ™ 81 +te . i= 1,...,n1
(8.11) ns= n1 + n2
Yio ™ 82 + e 0 i= 1,...,n2
with uncorrelated errors, sgi =0 and Var e = ci, v"-‘iz = a;. et P' - (P:,...,P;)

be a resampling vector from the bootstrap method, (3.12), with the bootstrap sample size

m = n. Rewrite P' = (P:1,..-,P;11.P;2,...,P;22) to correspond to the two samples of

n - n

d 1 * : 1. » - L ]

(8.11) and define n1 =z, P11, n2 = n-n1 - t1 Piz' Then
. e

(8.12) nj * B(n, a Y, 3 = 1,2

is a binomial distribution with parameters n and nj/n, and the conditional distribution

v Ty .
(8.13) ((p, ) 'nj) * Mult _(n 1, 3= 1,2,

19’ i=1 ~

5'-.

’
nj J 3
is a multinomial distribution with n; independent draws on nj categories each having

» *-1 33 ¢ T .
probability 1/nj. Then Bj = n Z Pijyij r I =12, lx D xl =nn, and

I gy
-
n n
pe e 2 "y Bq o - 2
(8.14) |x"> x| (8,-8,0° =~ =% {) p“(y“—y1)}
n 1
1
- -1 .M
where Y, =n, 21 yi1. From (8.13),
n n
T * LN T 2 1. -
g (XD x[(B -8 In) = s Vn,()i' Py, v n)
1
L ]
n n n
2 (o1 * 1 1 -2 1 %1 - -
(8.15) -~ {E PyaT (VTR - 1,2‘1 "3 (¥, ¥y yy ¥y
1 1
- [ ]
n n_n n
1 - .2
-2 ;1 Ity ™= ;2 88y
n1 11 1
where
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n
3 -2
8, = .
sj 121 (yij"'j)
From (8.14) - (8.15),
*

T g )2 22 %2
E (|x'D xl(51-81) ) = x,(n1 s8,) = my ss,

Similarly,

n
T * .~ 2 1
E (|x"D x| (B,-8,)7) " 8s,
The cross term
T * . . A
£, (|xD x| (B -8,)(8,~8,)) = 0
since its conditional expectation given n:, n; is ;nlily shown to be zero.

Therefore we have

n n
* * ~ -
e, [x"0 x| (8°-8)(8"-8)T = atagi2 s, —Lss) .
n, 1 nz 2
Its expectation under (8.11) is
n, (n_=-1) n_(n,-1) y
2" 1 2 1" 2 2 H
aiag( - oy — 02) .
1 2
which is not proportional to the variance of (81.82)a
2 2
- - 9, 9%
var(8,.8,) = anq(;;-; ' -'E) '

unless ny = ny. Therefore, no matter how A is chosen in (8.1), (8.2) cannot be
satisfied. In fact, its bias does not go to zero as n + = unless n1/n2 + 1.

From similar computations, it can be shown that the unweighted bootstrap variance

estimator
88 88
L L o 1 1 1 2
(8.16) E (R =8) (R =8)" = dlag(,(~3) = E () )
n n 2
1 2
* . e, *
which is well-defined if n,  and n, > 1. FPor small or moderate ny, E,(n, ’ni > 1) i

not close to (n1 - 1)" and the unweighted estimator (8.16) is biased. If n, and ny

L S * -
are both large, E,(n 1|n >N ztn, -0 ' ana (8.16) is almost unbiased. It is,

i
however, unclear whether this can be extended to general linear models even when the error
variances are equal.

It is not lurpri.ihq that the unweighted bootstrap does not provide an unbiased

L ]
variance estimator, since, as in the case of the unweighted jackknife, the LSE's 8 based
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on the bootstrap resamples are not exchangeable. What is more disappointing is the failure

of the weighted bootstrap. One would expect it to perform well since the same weight

function was used in jackknife resampling with satisfactory results.

If (8.11) is recognized as a two-sample problem rather than a regression problem,
unbiased variance estimators can be obtained by bootstrapping and rescaling within each
sample. But the main point we have tried to make here is that a result like Theorem 3
cannot be extended to the bootstrap method for the general linear model (3.5). It is

"however unclear what will happen if the weight w, in (8.1) is chosen differently from
|x™o"x|.

On the other hand, the jackknife works quite well here. Routine computation gives

( 881 882 )
v = diag Ty -~ ’
J(1) n‘l(n1 1) n2(n2 1)
and
2 c"4!
A 22
Ban ” d“q(n1' nz) .

The latter also follows from Theorem S(1) since the model (8.11) satisfies (6.2). 1t can
be shown that the delete-two jackknife

Ya,n-2 = Y3(1)

and that
s8, 8§
n 1 2
va(1) = 503 a5 57
ny My

which is biased but becomes approximately unbiased as n, and n, become large. The

usual variance estimator

88 + 88
2 141
var = P diag(n—', n—zl

is unbiased for 01 - ‘2' approximately unbiased for ¢ 1 near 62, and biased otherwise.

To obtain valid bootstrap variance estimators, we can draw a simple random sample

*.n

(01)‘
L] -~ - -

residual. Define the bootstrap data Y, - x.fB + LI i = 1(1)n, by treating B as the

with replacement from the “"population® (r 1/v‘1-)z/n}';, o=y, - xra is the ith

true parameter with the above "population"™ of errors, and the bootstrap LSE is
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(8.17) g’ = (xTxy~xTy*

{ . Yor any nonlinear estimator 0 = g(R), the bootstrap variance estimator is defined as

. ~ « * T * * *
(8.18) v, = E, (0 ~8)(A -6)" , 8 =gq(8), 8 1in (8.17) .

.
Note that © -6 is unweighted. When 6 = B, it is easy to see (Efron, 1979) that
y R

1' U2 - z r2 .
1 i

A\ ~2, . T, -
(8.19) v, = var = (X' X) ek

Therefore, for homoscedastic errors Var(e) = 021, vy 1s & valid variance estimator. For
constructing confidence intervals for 6, note that each y' vector is associated with

the same X matrix. The unweighted percentile method of Efron (1982) is as follows.

TR AR B | n ooy, "W r] "l o NI o ¢ mree E

~~
Repeat the above procedure for B times. Define CDFB(t) to be the unweighted empirical

*
distribution function based on the B bootatrap estimates 6 b, b = 1(1)B. The bootstrap

=g sy

percentile method consists of taking
o~ =1 A~ -1
(8.20) [CDFB (a), CDFB (1~a))
as an approximate 1 - 2a central confidence interval for 6. The interval (B8.20) is
computed with a continuity correction.

3 . But for heteroscedastic errors Var(e) = diag(uf,...,o:), vy 5;} does poorly as

demonstrated in Section 6 for the linear parameters. This should be quite clear from the
nature of the procedure. The assumption underlying the drawing of i.i.d. samples from
{21//1:57;} is that the residuals r; are vieved as exchangeable. The first bootstrap
residual e: may come from the tenth residual ry;, and so forth. The heterogeneity
among r; is iost in this mixing process. On the other hand the delete-one jackknife, by

rataining the identity of the residuals, reflects the possible hetercgeneity of r; and of

the error variance of.

Recognizing the model-~dependent nature of the bootstrap residual method, Efron and
Gong (1983, p. 43) seemed to favor the unweighted bootstrap method since it “takes less
advantage of the special structure of the regression problem.”™ However, their next state-
ment that "the (unweighted bootstrap) method gives a trustworthy estimate of a's

variability even if the regression model is not correct" cannot be substantiated as one can

easily infer from our counterexample.




S8ince the basic principle of the bootstrap is to simulate samples that resemble the

unknown population, we must point out that the “"population® (r 1/¢ 1-k/n} does not resemble
the true population of errors {01} in that r; are mildly correlated with nonconstant
variances (1-v1)/(1-k/n) if var(e) = ozt. One possibility is to replace the n values

with variance 02, e.g. the BLUS

-

t1ﬂ 1-k/n by n - k uncorrelated residuals e N

residuals (Theil, 1971). 1If the errors e, are assumed to be normal, e, are also

normal. One may first apply a random orthogonal transformation T to {e 1}':-)( to obtain

L -~

o] - -
('!biJ': k, and then draw i.i.d. sample l‘l):-‘l from {'mi): k. a major problem is that
the i.i.4. property of {ei} depends critically on the howmoscedasticity and normality

assumption.

9. Bias reduction

The nonlinear estimator 3 = 9(8) of 6 = g(B) has in general a bias of order
n-’. In this section we will show that bias reduction is closely connected with the
existence of an almoat unbiased variance estimator. Assuming (C3) and the continuous third
differentiability of g in a neighborhood of §#, Taylor expansion gives

(9.1) 0 =04+ g'(8)7(B-8) + 3 (B-8)7a"(AIB-8) +O (D)

-1.5.

where Op(n'1'5) denotes terms of stochastic order n From (9.1), the bias of

(9.2) B(6) = B0 - 8 = 3 tr(g*(B)Var(B)) + O(n ™))

vhere tr is the trace of a matrix. 8ince the reduction of bias of 3 amounts to
estimating B(;) unbiasedly up to order n'z, we will focus on the latter problem for the
rest of the section. Data resampling makes it possible to estimate 3(3) without
computing the Hessian wmatrix g"(#). PFirst we consider the jackknife resampling. 1let

3. - q(i') be defined in (7.3). Taylor expansion gives

(9.3) o - o+ g'(ﬁ)'(i.-ﬁw +3 ('E.-Q)'g'(ﬁ)(i.-a) .

where n. is the remainder term. If the weights w, are uniformly bounded away from 0
and 1, the discussion around (5.6) and (5.6)' implies that E. -ﬁ and a - 8 have the
same stochastic order. If we further assume

(9.4) B-8= op(n'°'5)
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and the continuous third differentiability of g around B, we have

- -1.5

(9.5) n' Op(n ) .
For the jackknife with subset size r, we propose to consider the following estimator of
B(6),

~ X ~ ]x:'x'l
(9.6) B - w (6 -0), w =

J,r 8 s 8 T

ses, I [x x|

where )' is summation over s in S . From (9.3) and Theorem 2,

~ 1 . - \ ~' “ o~ .
By o = 2 tE(GB) ' w (B ~B)(B -B)) + I won,
(9.7
1 -
- ; tx‘(g (B)Va’r) + r' vsns R

0.5) and E(v, ) = Var(f) under (9.4) and Var(e) = o1,
14

the first term of (9.7) estimates B(8) unbiasedly up tc order n-zy the second term of

Since g"(8) = g"(B) + Op(n-

(9.7) is of order Op(n'1‘5) under the same assumption that led to n, - op(n'1'5)

since w, are assumed to be bounded away from 0 and 1. This leads us to the following

theorem.

Theorem 7. Assume (C3), the continuous third differentiability of g around £ and that

the weights v, are uniformly bounded away from 0 and 1. For homoscedastic errors

Var(s) = 021,
~ ~ -2
x(BJ'r) = B(8) + O(n ) .
We assume (C3) in Theorem 7 since it implies (9.4) under Var(e) = 021.

It is clear from the arguments leading to Theorem 7 that, for any general
Var(e) = V, as long as (9.4) and
(9.8) B, .- var(8) + O(n"2) under var(g) = V
are satisfied, the conclusion of Theorem 7 holds true. One such candidate is the delete-

2 2
one jackknife variance estimator vz q)e Por V = diaq(o,.--.,on), according to Theorem

S(11),

7 A ah v
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!vJ(') = Var(B8)(1 + O(n ')) under (Ct1 - C2)

= Var(B) + o(n"2) under (Ct - €3) ,

where the second equality follows from Var(a) = O(n-1) under (C3). Since (C1) is implied
by (C3 - C4), we have the following corollary.

Corollary 3. Under the conditions of Theorem 7, (C2) and (C4), for heteroscedastic errors
Var(e) = diaq(aﬁ,...,oi),

(9.9) EB_, .. =B(8) +o0(n2) ,

Brn

where, w, = xf(xTX)"xi. E(i) =B + /nk (8(1)-3) and
- n (1w,)
By(1y " Bgn-1 T E nk

~

(9.10) {9‘8(1)’ - g(B)} .

Since YH(1) also satisfies (9.8) for V = diag(of,...,o:), one would expect a
result similar to Corollary 3. Hinkley (1977) considered the following estimator of

B(9),

By ) - g(8)}

(9.11)

n -
= %‘ (1-'w1){9(8(“

and demonstrated its unbiasedness (without spelling out proper regularity conditions) for

the homoscedastic case. A stronger result will be proved next. Consider the expansion
1 - -

1 It I -
(B(i) f) g (B)(B(i -8) +n

N - apoa -
(9.12) 9(5(1)) = g(B8) + g'(B) (B(i)-ﬁ) A ) ) !

" Op(n-3) since g''' 4is bounded in a neighborhood of B8

-8= op(n"). (9.12) gives

wvhere the remainder term n

and 5(1)

- n
1 . _
(9.13) By 2 tr{g (S)va(1)) + E v Ineyy o

which reveals the surprising connection of the bias estimator B with YI(1)e instead

J(1)

of with its twin Ya(1)® Both B and Ya(1) were motivated by pseudo-values

J(1)
(Hinkley, 1977). (The connection seems to suggest that \ATRY) is a more natural estimator

n 1.5
than v!(1)') In lemma 5, to be stated later, we will prove 21(1-v1)n(1) = Op(n Y,

which in conjunction with (9.13) and Theorem 6(ii) yields the following result.
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Corollary 4. Assume the continuous third differentiability of g near 8 and (C2 - C4).

Por heteroscedastic errors Var(g) = dilq(of,...,u:),
Bt
The proof parallels that of Corollary 3, the key steps being asgsociated with (9.13),

- B(8) + O(n"2) .

Theorem §(ii) and Lemma 5. The main difference between Corollaries 3 and 4 is that gome of
the regularity conditions required in Corollary 3 are automatically satisfied in Corollary

4. The reason is that 8(1) is much closer to B than E(i) to B. This brings home

the problem of choosing between 5a(1) and 53(1)'
g(8) - g(8), whose expectation is the bias B(8), we prefer 53(1) since it uses E(i)

In terms of imitating the behavior of

-~ a -

and B wvhose distance matches that of £ - 8 whereas B(i) -8 in 83(1) is much
smaller than B - 8. See the relevant discussion in Section 7. This difference will
probably not be detectable quantitatively unleass g is markedly nonlinear. On the other

hand, for very smooth g, heuristic (in contrast to rigorous) computations show that the

arror term t(?-vi)n(i, in 3;(1)' (9.13), is of stochastic order n"2 uhile the error

-1.5
’

term [ v'n. in B (including B (9.7), is of stochastic order n

J,xr J(1))’

suggesting that B is a better approximation to B(6).

J(1)

lemma S. Under the conditions of Corollary 4,

-1.5
t(1-w1)n(i) - Op(n Y

where "(i) is defined in (9.12).

- - K

Proof: Denote 8(1) -8 = (dij)j-1' Since g''' 1is bounded near 8,
k n

Jemw ) ) (1-v1)|d

(9.14) |2(1-w1)n
§,8,m=1 i=1

(1) 138100

where M < ® independent of n. Under (C2 - C4), it is proved in lemma 6 that

“*'9(1) -8| = C¥‘n-0-5). Continuing (9.14), we have
i -0.5 k n
(9.15) |E(1ne, 0, , | €0 (n" "7y ) ) (1=w,)|a,,a, | .
1M P AL e
For L =m,
" 2 -1
(9.16) % (1-'1"dil| = (L,) element of va(1) - Op(n Y .
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for L ¥ m,

n
(9.17) T wla e | = op(n"')
1

follows from (9.16) and the Cauchy-Schwarz inequality. Combining (9.15) ~ (9.17), we have

the desired result. o

Note that Op(n'i's) is only an upper bound of the order of E(i-ui)n(“ since

-2).

n - op(n-a) and the sum of n op(n'3) terms is likely to be of Op(n

1)

Lemma 6. Under (C2 - C4), and Var(e) = dug(of,...,a;‘:)'

-

m:x(B(il) - ﬁ) = Op(n-o's) .

For Var(g_) = 021, this follows from the proof of Lesma 3.3 of Miller (1974). PFor
unequal a:, the only change involves using (6.4) of our lLemma 4. Note that (C2 - C4)
implies (C1 -~ C3) as shown after Theorem 5. (Ct - C2) guarantees (6.4) and (C3)

guarantees (X°x)”! = o(n™ ).

-

a1
- r=k+1 s a
(9.18) B ™ mer L. vgl9(8) - g(B)), w o in (9.6) .
leSr

For a general jackknife with subset size r, can be extended to

The difference between B and ; is analogous to that between v (8), (7.1), and
J,r J.r J,r

;J t(e), (7.2). The former applies the scale adjustment (r-k+1)/(n-r) externally and
’

the latter internally. As E‘M does in Theorea 7, Ba,r also estimates the leading term
of 3(3) unbiasedly.

Let us now turn our attention to the bootstrap sampling. Since the unbiased
estimation for B(S) hinges on the unbiased estimation for le‘(a). from the study of
Section 8, we need only consider the last bootstrap method, (8.16) - (8.18), considered
there. Let B' - (xTx)-‘xTy. be the bootstrap LSE defined in (8.16), where * denotes
the bootstrap (or i.i.d) sampling from the rescaled residuals. From the unbiasedness of

the LSE,
(9.19)

and from (8.19),
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1

. A - - -
(9.20) r8 -8’ - 87 = o’ix")

is unbiased for Var(8) under Var(e) = 021- By repeating the steps (9.3) - (9.7) and

using (9.19) and (9.20), the proposed bootstrap estimator of bias

- - ~ [ ] *
(9.21) Bboot =E9 ~0,08 =g(B8)
is equal to

1°2 - T .~1
(9.22) 30 tr(g"(B)(X'X) ) + E.n, ,

where 1n_ is the remainder term of the expansion
) - AT. -~ 1 - AT ~ 'Y -
8 =8+ g*'(B) (B ~8) + 2 (8 -8)g"(B)(B =-8) +n, .

From (9.21) -~ (9.22), we have

Theorem 8. Assume (C3), the continuous third differentiability of g near B and

-1.5)

(9.23) EN, = op(n .
For homoscedastic errors Var(s) = 021.
-~ -~ -2
EB + .
..boot = B(0) Oo(n )
This unbiasedness result cannot be extended to the heteroscedastic case because of
(9.20). The condition (9.23) is a reasonable one since 1n = Op(n-1's) follows from

. -
B =B = Op(n'o‘s). which is a consequence of (C3) and the conditional central limit

*
theorem of 8 (Freedman, 1981, Theorem 2.2).

10. Simulation results

In this section we examine the Monte-~Carlo behavior of (i) the bias of several
estimators of the variance-covariance matrix of the least squares estimator, vnr(a).
(11) the bias of several estimators of a nonlinear parameter 0 = g(f), and (iii) the
coverage probability and length of the associasted interval estimators of the same nonlinear
parameter.

Under consideration is the following quadratic regression model:

2
Y, - Bo + B1x1 + Bzx1 te i = 1(1)12

x = 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 10 .




R np—

Two variance patterns are considered:

/X
1l variances: e = 7 N(0, 1)

Bqual variances : e = N(O0,1) .

The '1" are independent. For unequal variances the variance-covariance matrix of the

ordinary least squares estimator £ 1is

1.50 -0.79 0.08
Var(;) = 0.48 -0.05
0.01
while the expectation (see (6.12)) of the usual variance estimator G:i, is
2.09 -0.87 0.07
P - 0.42  -0.04
0.00.

Because of the heterogeneity of errors, the two matrices are quite different. PFor a
variance estimator v, its bias is defined as

B(v) = B(v) ~- Vhr(a) .
Pour variance estimators are considered: (1) the usual variance estimator var (5.9),
which is identical to the bootstrap variance estimator v;, (8.18), (2) the delete-one
jackknife variance estimator Va1 (5.16), (3) Hinkley's delete-one jackknife variance
estimator VE(1) (6.10), (4) the retain-eight jackknife variance estimator v3,8 (5.7).
The following results are based on 3000 simulations on a VAX 11/780 at the University of
Wisconsin-Madison. The normal random numbers are generated according to the IMSL sub-

routine GGNML. The same set of normal random numbers is used throughout the study.
+58 -0.07 -0.0

B(v,\a!:) - -0.05 0.01
=-0.0

0.02 0.03 -0.00

B(Va(i)) - -0.04 0.01
=0.0

-0.23 0.19 -0.03

B(Vn(1)) - =-0.14 0.02
-0.0
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0.09 0.01 -0.01
B(v ) = =-0.04 0.01
=0.00

In the unequal variance case, var is known to be biased (6.12) - (6.13), V3(1) to be
alpost unhiased (Theorem 5). Both are confirmed by the simulations. The robustness of
V1,8 conjectured in Section 6 is also confirmed. The only surprise is the poor perfor-
mance of VYR(1)* The claimed robustness (as n becomes large) of Yu(1) in Theorem 6
does not hold up here. 1Its bias is quite nontrivial. This prompted us to examine the bias
behavior of va(1) in the equal variance case since Ya(1) is the only one that is not

1 1

exactly unbiased (Theorem 6(i)). In this case, Var(g) = ;Q(xTx)' - az(xrx)' . The

bias of Ya(1) is not negligible,

-0.13 0.07 -0.01
‘(vﬂ(i)) - -0.04 0.00
=0.00

and the biases of 5:}, VI and vy,8 Aare all very small (none of the entries exceeds
0.0102 4in magnitude). Another thing to note is that all the diagonal elements of YH(1)
are downward-biased in the simulation. The poor performance of Ya(1) in both cases
should cause its users some concern at least in the small sample situations.

We next consider bias reduction and interval estimation for the nonlinear parameter
8

0 m o m—

'
28,

which maxinizes the quadratic function so + B1x + Bzx2 over x. Six point estimators are

B, ... (9.13); 8§ -8 -8 (9.10); 8

an =8 " By N N’ 8"

3,8° (9.18); Oa’a =0 = 33.8' (9.6); ehoot =0 - 5 e’ (9.21). In Arawing the

bootstrap samples, the uniform random integers are generated according to the IMSL

considered: 0; 6

a
9 -

subroutine GGUD. The number of bootstrap samples B is 480, which is comparable to
495, the total number of jackknife subsets of size 8.

Their average biases are given in Table 1 for 80 = 0, 81 = 4 and geveral values of
32. Bias reduction is more difficult to achieve when 82 gets closer to 0 saince §

becomes a more curved function of 82' and when the variances are unequal. 1In the most




nonlinear situation 82 = «0.25 and unequal variances, only 6

PIET) and ebooe achieve

mild reduction of bias and other estimators in fact have bigger biases. In all the other

situations, the two jackknife estimators © and 0 3.8 achieve substantial reduction
’

J(1)

of bias. On the other hand, the other two jackknife estimators ‘6’“ ) and 3 3.8 based on
4

internal adjustment of distance do not perform as well. This is consistent with the
asymptotic comparison given before Lemma 5. What puzzles us is the unpredictable behavior

of the bootstrap estimator 6 for 82 = ~0.,25. According to Theorem 8, 6

boot boot
reduces bias for egual variances but not for unequal variances. What we see in Table 1 is

the contrary. It appears that the curvature effect is the dominant factor here.

Table 1. Biases of six estimators of 6
(based on 3000 simulation samples)

B =0, B, =4

0 1
Unequal variances BEqual variances
estimator : Bz 82
-0.25 ~0.35 -0.5 -1.0 -0.25 -1.0
) 0.41 0.05 -0.02 «-0.01 0.08 -0.01
OJ( 0 =-0.22 -0.01 0.00 -0.00 -0.05 ~0.00
03(1) 0.63 0.06 0.02 0.00 0.02 ~0.00
] 1.48 0.00 0.00 -0.00 0.01 -0.00
J,8
[ 2.39 0.05 -0.01 =0.00 =-0.08  ~0.00
J,8
eboot 0.16 0.02 0.01 -0.00 -0.12 ~0.00

We now consider interval estimation for 6. PFor equal variances, the classical
Fieller's interval is exact. In the context of maximizing the quadratic function, the

exact (9-2a) PFieller's interval is (Williams, 1959, p. 111)

(1) (==,®) it (1-912)2 < (1-g,,)(1-g,,)

2
(10.1) (XD (==,8)) U (8,®)  4f (1=g,)° > (1-g, ) (19 )0 g,y >

(III) [0y,9p) othervise
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where OL, Ou are the smaller and larger values respectively of

8 2 _ Y2
0f1-9,2 t [(1-g,,) (1-g,0(1-g,.01?}/(1-g,,)
22 i3
(10.2) t ¢ ¢
TG A O

93 Yo, 3¢2

8181

and ta is the upper a percentage point of a t-distribution with n - 3 (here 9)
degrees of freedom, ;2 is the usual variance estimator (5.9) (by assuming equal
variances). Fieller's interval estimate is unbounded in the case of (I) or (II) of
(10.1). The method is not exact if the variances are unequal.

Altogether nine methods are compared in our simulation. A description is given below.

symbol interval estimate
rieller Fieller's interval, (10.1)
VCI( 1) Delete-1 jackknife 8t tav/vJ n ‘(0). (7.2)
S~
VHI(1) Delete-1 jackknife 0t taJvJ n 1(0). (7.1)
n=
vcJI8 Retain~8 jackknife I 3 tquJ e(0), (7.2)
’
VHJ8 Retain-8 jackknife 83 tu/vJ B(0), (7.1)
’
VBOOT Bootstrap variance f ¢ ta/;;, (8.18)
VLIN Linear approximation o ¢ ta/vlin' (7.4)
-1 o~ =1
PBOOT Bootstrap percentile (¢DFB~ '(a), COFB_ (1-a)}, (8.20)
o~ =1 P |
PJ8 Jackknife percentile ({CDFJ (@), CDPI (1=-a)], (7.5)
(retain-8)

(V s variance, C : curl, H : hat, P : percentile)

The average coverage probabilities (based on 3000 samples) for these nine methods are
given in Table 2 for five sets of parameters. Since Fieller's interval in the case of (I)
and (I@) of (10.1) has infinite length, we break the 3000 simulation samples into

categories (I), (II) and (III) according to which category the corresponding Fisller's

-43~




intervals belong to. In our simulation samples (I) never happens; (1I) happens only when
62 = -0.25 and ~0.35. In these two cases, the median length of each interval estimate is
computed separately for category (II) and category (III) and is given in Table 3. For the
rest, the median length over 3000 samples is given inside the parenthesis in Table 2. We
do not report the average lengths since they are too much influenced by a few extreme
values. Take Bz = -0.25 and unegqual variances as an example. The average lengths for
VCJ8, VHI8 and VBOOT in category III are 176.85, 365.76 and 39.54 respectively while
the medians are 10.65, 6.64 and 3.73. The three methods perform unstably in highly

nonlinear situations.

Table 2. Average coverage probabilities and median lengths for nine
interval estimation methods (3000 simulation samples)
Nominal level = 0.95, 8 =90, 8_= 4

0 1
Unequal variances Bqual variances
method 82 Bz
~0.25 -0.35 -0.5 ~1.0 -0.25 -1.0
Pieller +858 866 .968 «952 947 950
(.98) (.92) (2.48) (.64)
weI(1) .887 .848 .961 «950 .904 «935
(.91) (.89) (2.03) (.62)
VHI{1) 866 -845 «950 947 .899 «935
(.87) (.87) (1.94) (.62)
veJs <946 +920 . 968 .953 947 .939
(.97) (.90) (3.19) (.63)
VHI8 «931 +908 «965 953 941 «939
{.93) (.90) (2.69) (.63)
VBOOT 866 902 973 +955 «956 +946
(.97) (.91) (2.42) (.64)
VLIN «865 891 «969 .952 949 . 948
(.93) (.90) (2.18) {.64)
PBOOT <829 814 940 »921 «912 «916
{.84) {.79) (2.05) (.56)
pJB .809 « 758 909 <912 831 «900 ’

(.78) (.78) (1.90) (.55)

{length of interval estimate inside the parenthesis)
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Table 3. Median lengths of nine interval estimates
of category (II) and category (III)
B, =0, B8, = 4, unequal variances

1] 1
method 82 = 0,25 82 = ~0,35
11(199). I11(2801) II(7) II1(2993)
Fieller L4 3.81 - 1. 10
veI( 1} 29.08 3.87 8.92 1.04
vHI( 1) 15.17 3.13 5.63 0.98
vcJs 223.67 10.65 38.08 1.59
: VHJI8 166.81 6.64 49.80 1.37
vBOOT 313.17 3.73 86.63 1.07
VLIN 14.75 2.91 5.82 1.02
PBOOT 55.05 3.07 t7.78 0.93
PJ8 28.54 3.34 8.22 0.92

'The figure inside the parenthesis is the number of
simulation samples belonging to the category

The results can be summarized as follows:

1. Bffect of parameter nonlinearity. ¥hen the parameter 0§ becomes more nonlinear (B2

closer to 0), all the intervals become wider and the associated converage
probabilities smaller. The phenomenon is especially pronounced for unequal variances
and Bz = =0.25, =0.35, where we observe the Fieller paradox (i.e., Fieller's intervals
take the form (10.1) (1X).) In these two cases, only the two retain-8 jackknife methods

provide intervals with good coverage probabilities. But the price is dear. Both the

mean and median lengths of their intervals are quite big even in category (III) where
Fieller's interval is reasonably tight but, of course, with poor coverage probability.
In the other cases, the first seven methods all do reasonably well.
2. Effect of error variance heterogeneity. As the theory indicates, the general perfor-
mance is less desirable in the unequal variance case. Fieller's interval is far from
' being exact for 82 = ~0.25, ~0.35 and unequal variances. For equal variances i

} Fieller's method is almost exact and the next six methods (t-intervals with various




3.

4.

S.

6

variance estimates) perform reasonably well even in the most nonlinear case Bz - =0.25.

The two retain-8 jackknife methods are least affected by the heterogeneity of variances.

Undercoverage of the percentile methods. This is very disappointing in view of the

second order asymptotic results on the bootstrap (S8ingh, 1981; Beran, 1982) which are
used as evidence of the superiority of the bootstrap approximation over the classical

t approximation. The undercoverage of the bootstrap percentile and the jackknife per-
centile methods, with the latter being the more serious one, is partly due to the fact
that their associated intervals are shorter. But noting from Tables 2 and 3, the
linearization variance method (VLIN) has comparable interval length and yet higher
coverage probabilities. We think the problem is a more intrinsic one. We speculate
that this shortcoming has something to do with the skewness and light-tailedness of the
bootstrap and jackknife histograms.

Fieller’s method is exact in the equal variance case even when the parameter is con-

siderably nonlinear, but is quite vulnerable to error variance heterogeneity.

The linearization method is a winner. This is most surprising since we cannot find a

theoretical justification. The intervals are consistently among the shortest, and the
coverage probabilities are quite comparable to the others (except for 82 = =0.25, ~-0.35
and unequal variances where VCJ8 and VHJ8 are the best). The linearization method is
compared favorably with Fieller's method. The former has consistently shorter intervals
than the latter and the coverage probabilities are very close. 1In fact for

82 = =0.25, -0.35 and unequal variances, VLIN has much shorter intervals and much higher
coverage probabilities. Note that Fieller's intervals are unbounded in 199 (8 2 "
=0.25) and 7?7 (82 = ~0.35) out of 3000 samples (Table 3).

Internal (curl) or external (hat) adjustwent in jackknife variance estimation? In
general the curl jackknife gives wider intervals than the hat jackknife. On the other

hand the coverage probabilities of the two methods are very comparable. Further

research is needed to sort out the relative merits of the two adjustment methods in more

general situations.




11. Concluding remarks and further questions

The main ideas and results of this paper can be summarized as follows:
1. The general representation of the full-data least squares estimate as a weighted average
of the resample-~data least squares estimates for general resampling plans. We expect to

see further applications of this representation.

2. The proper weight for each subset least squares estimate is proportional to the

E determinant of the x"'x matrix of the subset. Since the latter matrix is proportional

to the Pisher information matrix of the subset, it immediately suggests an extension of

our general jackknife procedure to nonlinear regression models and generalized linear
models (McCullagh and Nelder, 1983). For each subset, ﬂg. corresponding nonlinear least
squares estimate or maximum likelihood estimate is computed and the Fisher information
matrix of the subset is evaluated at the estimated parameter value. The formulae
developed in the paper can be applied in a straightforward manner.
The delete-one jackknife variance estimator is robust against error heterogeneity. None
of the bootstrap methods under consideration is raobust. Bootstrapping the residuals is
too model-dependent to be a robust tool.
The scope of the jackknife method is broadened with the introduction of the (weighted)
jackknife histogram and the interval estimation method based on its percentiles. It is
made possible by the more flexible choice of subset size and the weighting factor dis-
cussed in 2. Although the two percentile methods do not perform well in the simulation,
an effective modification of the jackknife percentile method will probably have to
incorporate the above two elements.
The problem of bias reduction is intimately related to unbiased estimation of
variance. This is especially interesting when the latter is not easy to achieve, e.g.
in the heteroscedastic situation.

Several questions have been raised in the course of our study. We hope they will

generate further interests and research in this area.
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I.

II.

III.

1v.

\ D

We conjecture that Theorem S is still true for Vi.r with small 4 = n-r, that is,
,

the delete-d jackknife variance estimator is robust against error heterogeneity.
Does vy o enjoy other desirable properties? For example, is vy .o (delete-two
jackknife) robust against certain forms of error correlation?

Does there exist a bootstrap variance estimator that is robust against error hetero-
geneity? For the bootstrap method to be model-free or model-robust as is sometimes
claimed (Efron and Gong, 1983), this is a very basic requirement.

The methods based on the bootstrap-histogram and the jackknife-histogram perform

disappointingly in the simulation. Refinements of these methods are called for. One

P e e Y TR

obvious defect of the resample histograms is that they have shorter tails than their
population counterparts. The handling of gkewness may also be improper. The poor
performance of the percentile methods raises our doubt about the relevance of the
present asymptotic results on the bootstrap. Mathematical results that can explain
the empirical behavior are urgently needed.

Is it possible to find a theoretical guide on the choice of subset size for the jack-
knife method? One interesting possibility may start with the concept of "distance
matching” given in Section 7.

The scale factor (r-k+1)/(n-r) in the retain-r jackknife method is used for
*distance matching®™. It can be applied either before or after the nonlinear trans-
formation (see (7.1) and (7.2)). It would be interesting to sort out the relative

merits of these two scaling methods.
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ABSTRACT (continued)

Three bootstrap methods are considered. It is shown that none of them has the
robustness property enjoyed by the (weighted) delete-one jackknife. Subset
sampling with variable subset size is also considered. Several bias-reducing
estimators are proposed. They are motivated by the observation that bias-reduction
is mathematically equivalent to unbjased estimation of variance. Some simulation
results on estimating the ratio of two normal parameters are reported.




